Nuprl Lemma : chain-order_transitivity 13,45

es:ES, Cmd:Type, In:AbsInterface(Cmd), isupdate:(Cmd), SysOut:AbsInterface(Top).
(E(Inr E(Sys))
 (f:sys-antecedent(es;Sys), chain:(E(Sys)(Id List)).
 chain-consistent(f;chain (xyz:Id. x << y  y << z  x << z)) 
latex


Upabstract chain replication
DefinitionsP  Q, L1  L2, Id, f(a), x << y, #$n, ||as||, (x  l), {i..j}, e c e', e  X, E, xt(x), x.A(x), pred(e), <ab>, A, first(e), suptype(ST), S  T, x:A.B(x), !Void(), x,yt(x;y), pred!(e;e'), , SWellFounded(R(x;y)), constant_function(f;A;B), e < e', r  s, val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , Msg(M), kind(e), loc(e), Knd, kindcase(ka.f(a); l,t.g(l;t) ), EOrderAxioms(Epred?info), IdLnk, Unit, EqDecider(T), strong-subtype(A;B), , a:A fp B(a), EState(T), type List, sys-antecedent(es;Sys), Top, , AbsInterface(A), Type, ES, x:AB(x), {x:AB(x)} , Atom$n, chain-consistent(f;chain), hd(l), b, adjacent(T;L;x;y), s = t, P  Q, no_repeats(T;l), a < b, P & Q, x:A  B(x), x:AB(x), x:AB(x), E(X), x before y  l, t  T, left + right, {T}, increasing(f;k)
Lemmasl before transitivity, l before sublist, event system wf, subtype rel wf, EState wf, Id wf, rationals wf, member wf, strongwellfounded wf, pred! wf, unit wf, top wf, first wf, assert wf, not wf, loc wf, constant function wf, IdLnk wf, kindcase wf, Knd wf, bool wf, qle wf, cless wf, val-axiom wf, nat wf, Msg wf, kind wf, EOrderAxioms wf, deq wf, es-E wf, es-is-interface wf, es-E-interface wf, es-interface wf, sys-antecedent wf, es-causle wf, chain-consistent wf, l before wf

origin